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A NEW THEORY FOR A ROTARY-KILN HEAT EXCHANGER* 

M. IMBERt and V. PASCHKIS: 

~Receive~ ~eee~r 1961) 

Abstrac&-From theoretical considerations, two limits for the length required to achieve a prescribed 
temperature rise in rotary kilns are established. The “well-mixed” condition represents the lower 
limit (minimum length), while the “non-mixed” condition represents the upper limit (maximum 
length). The actual kiln length lies between these two limits. Procedures for the calculation of both 
limits are presented in the paper. 

Results from the “well-mixed” theory agree remarkably well with published data for an existing 
kiln. 

N~~CLA~~ 

The following symbols are used in this paper, 
and a set of typical dimensions are added in 
parentheses : 

: 
longer side of a rectangle (ft); 

i, 
shorter side of a rectangle (ft); 
p,c,,i%/kw (dimensionless) ; 

fin. =, see Appendix (dimensionless); 

B:, n, 
~~~~ri/k~ fro - ri] (djmensionless); 
see Appendix (dimensionless) ; 

cm 

c, 
E, 
h, 

h, 

4 
K 
k, 
L, 
4 n, 
Q, 

specific heat at constant pressure T(O), 
(Btu/lb “F); 0, 
h,,~~&,[r, - rJ (dimensionless); w, 
WC, (Btu/h OF) ; 4 Y, 
boundary conductance (heat-transfer 2, 
coefficient) (Btu/fP h “F); - . 

rate of heat loss from exposed kiln wall 
(Btu/h ft) ; 
rate of heat loss from covered kiln wall 
(Btu/h ft) ; 
see Appendix (dimensionless) ; 
kiln-wall radius (ft); 
mean kiln-wall radius f = (r,, + pi)/2 
(ft) ; 
see Appendix (dimensionless); 
temperature measured at angle B (“F); 
temperature measured at L (“F) ; 
temperature measured at z = 0 (“F); 
axial velocity of the charge (ftjh); 
weight flow (lb/h) ; 
Cartesian co-ordinates (ft); 
distance measured along kiln bed (ft). 

modified boundary conductance, see Week symbols 
equation (20) (Btu/fP h “F); a9 A/2 (dimensionless); 
see Appendix (dimensionless); W [(A/2)2 + B]“* (dimensionless); 
see Appendix (dimensionless) ; Yv [(A/2)2 + C]lla (dimensionless); 
thermal conductivity (Btujft h “F); 4 angle @ad) ; 
kiln length (ft); 8 03 included angle of the charge (deg or 
summation indices; rad) ; 
rate of heat transferred (Btu/h ft); Y¶ W%) - (l/E) (h “F/B% 

PI density (lb/fts); 
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ment of the requirements for the degree of Doctor of 
Engineering Science in Mechanical Engineering at 
Columbia University, New York 27. 

t Associate Professor, Department of Mechanical 
Engineering, Polytechnic Institute of Brooklyn, 333 Jay 
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see equation (8) (Btu/h ft “F) ; 
angular velocity of the rotating kiln 
wall (rev/h); 
(m7r/a)2 + @m/6)* (ft-1) ; 
E,/E, (dimensionless). 

$ Professor in Mechanical Engineering and Director Subscripts 
of the Heat and Mass Flow Laboratory, Columbia c 
University, New York 27. 

-9 charge ; 
$9 inside; 
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g, 
0, 

W, 
1, 

2, 

iv, 
gc, 
wa, 

WC, 

w 

gas ; 
outside; 
wall ; 
exposed section of kiln wall; 
covered section of kiln wall ; 
gas to wall ; 
gas to charge ; 
wall to ambient; 
wall to charge ; 
re-radiated. 

II. REVIEW OF THE “WELL-MIXED” CONDITION 

In deriving the equations for the “well-mixed” 
conditions [l], the authors considered the rotary 
kiln as a heat exchanger with the following 
modifications. There is no wall separating 
the two fluid streams, gas and charge, which are 
in heat exchange, and the wall which encom- 
passes both streams is rotating. This outer 
rotating wall serves as an additional heat-flow 
path, since it transports the heat which it 
receives from the hot gases to the underside of 
the charge: this heat transport occurs in part by 
conduction, and in part by storing heat in each 
particle of wall while it is exposed to the gas and 
giving it off while it is in contact with the charge. 
In Fig. 1, the heat-flow paths for a typical section 
in the rotary kiln are traced. 

I. INTRODUCTION 
WHILE the performance of a rotary kiln depends 
critically on the heat transfer, analytical studies 
of the thermal behavior of kilns are practically 
non-existent. Instead, analysis of the over-all 
performance of existing units led in the past to 
several conflicting design criteria, none of which 
included the heat-transfer aspects of the kiln. 
In a previous paper [l] the authors presented a 
theoretical treatment of the heat-transfer con- 
siderations. Briefly, it was stated that the exact 
analytical expressions for the gas and charge 
temperatures in a rotary kiln are too complex for 
practical use, and that it therefore seems more 
desirable to establish equations for two limits for 
these temperatures. These limits are defined as 
the “well-mixed” and the “non-mixed” condi- 
tions; the terms are derived from the importance 
attributed to the mixing of the charge through 
tumbling. In the “well-mixed” kiln, the tumbling 
is assumed to be so perfect that the charge has a 
uniform temperature at any cross-section. For 
this case, the above-mentioned paper presents 
expressions for the gas, kiln wall, and charge 
temperatures. In the “non-mixed” condition, 
tumbling is assumed not to occur at all; instead, 
a slug of charge material, having the cross- 
section of the filled part of the drum, travels 
along the length of the kiln: under these con- 
ditions, the temperature of the charge is not 
uniform at any cross-section. The present 
paper starts with a brief review of the previously 
developed equations, which are then improved 
by inclusion of expressions for wall losses and 
re-radiation. After expressions for the “non- 
mixed” condition performance are derived, data 
from an existing kiln are compared with results 
obtained by both methods of calculation (“well- 
mixed” and “non-mixed”). 

From energy balances for a differential 
element dz, of kiln length, the differential 
equations for the wall, gas and charge tempera- 
tures may be obtained: the solutions to these 
equations are complicated functions of dimen- 
sionless parameters a, p, y and 8,,, the meaning 
of which are explained in the nomenclature. 
By definition /I = (cc” + B)‘j2 and y = (a2 + C)li2; 
writing the square roots in series form is per- 
missible if (B/a2)2 < 1 and (C/C?)~ .< I : 

and 

p = a + 2”R - ; :; + . . . 

c 1 c2 
y = a + 2, - S ,3 + . . . . 

(1) 

(2) 

By examination of the physical properties of 
actual kilns, one finds that B < 2a2 and C < 2a2; 
consequently, the series expansion is allowable 
and, all terms beyond the second in equations 
(1) and (2) may be neglected. Thus, simplified 
equations (3) and (4) are obtained: 

p--a+; 
C 

y=a+ ~ 
2a (4) 

Disregarding the re-radiation from the exposed 
part of the wall through the translucent com- 
bustion gases and the heat losses from the 
outside surface of the kiln wall, the authors 
obtained the following equations for the 
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FIG. 1. Schematic diagram showing the heat-flow paths and nomenclature for a typical section in a rotary kiln. 

HEAT TRANSFERRED 
FROM GAS TO WALL 

HEAT TRANSFERRED 
FROM GAS TO CHARGE 

HEAT TRANSFERRED 
FROM WALL TO CHARGE 

temperatures [l], using the approximate ex- 
pressions equations (1) and (2) for /? and y: 
for the portion of the wall covered by the charge, 

for the exposed portion of the kiln wall washed 
by the hot gases, 

~(2~ - e,) + ce, 
e- (B/2a)& 

’ 

for the gas, 
e, < e < 27r, (5b) 

where 

and 

A = h,,2ri sin 2 + 

The expression for X, equation (8), is independent 
of the physical properties of the kiln as well as 
of its rotational speed. A formulation for h may 
be obtained which includes the rotational 
speed, the kiln-wall thermal conductivity, and 
thickness; however, in the previous investiga- 
tions by the authors [l], the contribution of 
these quantities is shown to be of second-order 
effect only. 

[l - epALJ[-- 91 + epAZJ 

1 
(6) 

III. INCLUSION OF HEAT LOSSES AND 
-- , 

I1 - cpl[- ‘p + efihL] ~R~~~ON 

and for the charge, Tf Q, and Q, represent the average rates of 
steady-state heat losses per foot of kiln length 

T,(z) = T,(L) 
{ 

- ~[l - ela*] 
_ ~ + ePAr 

I 
of the uncovered and covered portions of the 
kiln wall, respectively, and Qre, WC the rate of 

1 - ePas [l - eaALJ[- q + ea+J internal heat re-radiated from the exposed wall 
+ Z-JO) 1-7 - -____ 

I1 - +I[- Y + efiALl to the charge’s surface, it is possible to extend 

+ Jl - efiXLWhz + epAZ 
I 

the “well-mixed” theory to include these effects 

(7) 
in the following manner. For a differential 

- cp + efiAL t element of kiln length dz, the heat-flow paths 



626 M. IMBER and 

for the uncovered and covered portions of the 
kiln wall are shown in Figs. 2 and 3: the terms 
1 and 2 represent the heat conducted in the wall; 
terms 3 and 4, the heat transported by the rotat- 
ing wall. From the energy balance for the hot 
gases, the differential quantity of heat lost by the 
gas per unit time, dQp, is 

where 
dQg = dQc + Q1+ Qz (9) 

J% $ T,(r) = dQ, (10) 

V. PASCHKIS 

and 

EC ii Tc(z) = dQC. (11) 

Subtracting equation (11) from equation (lo), 
and substituting equation (9) into the result, 
one obtains the following relationship : 

d”3 T,(z) - T,(z) =pdQ, + QP. (12) 
C 

Equation (12) may be further simplified, since 

4 

FIG. 2. Heat-flow paths for the exposed portion of the kiln wall. 

FIG. 3. Heat-flow paths for the covered portion of the kiln wall. 
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the rate of heat lost by the gas in dz is also 
equal to 

dQg =dQ,c +dQ,w. (13) 

As shown in Fig. 2, the rate of heat flow to the 
exposed wall from the gases in dz, dQgW is 

dQ,w = dQ,e, wc + Q, 
+ [- 1 - 3 + 2 + 41. (14) 

Substituting equations (13) and (14) into 
equation (12) establishes equation (15) : 

$X4 - Tc(z>I =P@Q,, + dew., w‘c z 

+[-l-3+2+4]}+ g++. (15) 
9 c 

From the equations for the temperatures in the 
wall, and the defining equations (20-22) the 
bracketed term may be replaced by 

VQm + dQre,toe + t--1 - 3 $2 + 41) 

= 2trrBeri sin 2 + 
( I 

& 
Wcrz 0 

1 __. _ 
+ JzgW(2n - Bo)ri I> -l F,(z) - T,(z)). (16) 

This substitution, equation (16), is discussed in 
the earlier paper by the authors [l]. Performing 
the required integration, one obtains the 
dimensionless temperature difference : 

Since the thickness of the wall is small in 
comparison to its perimeter, the circumferential 
heat flow may be disregarded. Consequently, 
for the exposed portion of the kiln wall, i.e. 
area of the wall exposed to the hot gases, the 
rate of heat losses Q, may be approximated by 
the expression 

where TB is the arithmetic mean of the gas 
entrance and exit temperatures, and the ambient 
2E 

temperature is 60°F. Similarly, the rate of heat 
losses from the covered portion of the kiln wall 
to the ambient Q, may be approximated by 

Qz = 

(19) 

where T, is the arithmetic mean of the charge 
entrance and exit temperatures. In the difference 
tTg - Tclavg. appearing in the exponential term 
of equation (17), the arithmetic means of 
entrance and exit values have to be taken for 
gas as well as charge temperature. The quantity 
h has the same general form as in equation (8); 
however, the boundary conductances h,,, h,, 
and h,, are replaced by modified values A,,, h,, 
and h,, and the dimensionless numbers ,!I and y 
are changed accordingly. 

The modified boundary-conductance values 
are defined by equations (20-22). For the 
exposed portion of the kiln wall, as shown in 
Fig. 2, 

Qgw - PI - Qre, '1L'c = hswriPn - &I 
P',(z) - T,(z)1 (20) 

where the left-hand side of the equation rep- 
resents the rate of heat received by the kiln wall. 
The quantity Qre, wc is the heat that is re- 
radiated by the surface of the exposed kiln wall 
to the charge’s surface. The modified boundary- 
conductance value !r,, equals the boundary 
conductance h,,, when Q1 and Qre, ‘Lcc are zero; 
the modified boundary conductance can of 
course never be negative, but is usually less than 
the boundary conductance h,,. From its 
definition, h,, can be interpreted as a measure 
of the net energy received by the wall. The total 
heat received by the charge through its surface 
exposed to the hot gases is 

Q,, + Qre, wc = h,,2ri sin $ [T,(z) - T,(z)] (21) 

where h,, is greater than the conventional heat- 
transfer coefficient h,,. For the covered portion 
of the kiln wall 

Qwc + Q2 = h,,r&K(4 - T&)1 G-9) 
which is consistent with the previous defini- 
tions: h,, is never negative, and it is a measure 
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of the total energy transferred by the covered 
portion of the wall. A further discussion of these 
relationships appears in Section VII. 

IV. THE “NON-MIXED” CONJWI’ION 

As stated above, for the “non-mixed” con- 
dition the charge is considered to move down 
the kiln axis as a slug having the cross-section 
occupied by the charge in the kiln, and possessing 
a finite thermal conductivity. In order to solve 
the “non-mixed” problem, three simplifying 
assumptions are made. Firstly, instead of starting 
the computation from the gas temperature, the 
surface temperatures are assumed to be known. 
Without the information regarding these tem- 
peratures, it is assumed that the exposed 
surface has the gas temperature, and the covered 
surface the wall temperature, as determined for 
the “well-mixed” condition: i.e. the tempera- 
tures from equations (6) and (5a) respectively 
are used. Secondly, the thermal conductivity of 
the charge in the z-direction is disregarded, and 
thirdly the cross-section of the charge is assumed 
to be a rectangle as shown in Fig. 4, rather than 
a segment. 

Consider a differential element of charge 
material of lengths, dx, dy, dz, through whose 
faces heat is flowing, and in the axial direction, 
z-direction, there is an additional mass transport. 

V. PASCHKIS 

From the energy balance for this differential 
element, the following differential equation 
describing the steady-state temperature in the 
charge is obtained: 

A heat exchanger, and correspondingly a kiln, 
can be considered as a transient phenomenon 
for an observer located in and traveling with the 
fluid or charge; or one may consider the problem 
as a steady state for an observer on the kiln wall. 
For him the charge temperature at any cross- 
section in the kiln does not vary with time; 
consequently time does not appear as an addi- 
tional variable in equation (23). 

For a rectangle having sides a and 15, and an 
initial temperature of T,(O), the boundary 
conditions are 

T, (x, Y, 0) = T,(O) 
T, (0, y, z) = mean of T, (0, z) 

over the angle 8, 

T, (a, y, z) = mean of T, (0, z) 
over the angle 8, 

T, (x, 0, z) = mean of T, (0, z) 
over the angle B0 

T, (x, b, z) = T, (z) 

FEET 

I (24) 

1 

J 

KLN RADIUS 

I.0 

b 

4-o t---t- 
FIG. 4. Rectangular approximation for charge shape in stages 6 and 7. 
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where the origin of the Cartesian co-ordinate 
system (x, JJ) is chosen so that it coincides with 
the lower left-hand corner of the rectangle. In 
essence, the mathematical problem to be solved 
is that of a rectangle with different temperatures 
on the several faces, the temperatures varying 
with z and therefore with time. The solution is 
obtained by using Duhamel’s theorem. The 
solution of equation (23) with boundary con- 
ditions of equation (24) is found by applying 
the principle of superposition: 

programming the equations for a digital com- 
puter. 

V. LIMITATIONS OF CALCULATIONS 

The procedures both for the “well-mixed” and 
the “non-mixed” conditions are based on a 
knowledge of the “modified” boundary con- 
ductance as defined by equations (20-22). In 
order to determine these modified conductances, 
the heat reradiated from the furnace wall to the 
charge (Qre, ,,) and the heat losses (Qr and Qz) 

T,(x, y, z) 16 m m 1 
T,(O) = 2 cc 

nm sin EiT sin y exp (-kc z#/pc,, u) 

wb=1.3,~ N=1,3,1 
m 

+R+Sexp($z)+z[J-R+(K-S)expW)] 
c 

sin (mrrx/a) sinh (mry/a) _____- 
m sinh (m&/a) 

[exp W) - 

(R 
W 

+ S> exp (- k, NP,c~~ 0) + ph + (k 

e 
&,pc 

c w 

I 

[exp WI - exp (--kc z~/P~c~~ 41)- (25) 

The expressions for J, K, R, S, A,, and B,, are 
shown in the Appendix. The large number of 
complicated terms appearing in equation (25) 
makes numerical evaluation of the charge 
temperature time consuming, particularly 
because the arguments in the exponent decrease, 
and with decreasing argument the required 
number of terms increases. Usually it is required 
to compute the length z for a desired charge 
exit temperature; since the variable z appears as 
an implicit function, a closed solution cannot 
be expected. Instead, values of z are assumed, 
the temperatures calculated and a curve of T vs. 
z is plotted; from this curve the value of z 
desired to achieve a given value of temperature, 
T, is read. The numerical work can be reduced by 

must be known. While the heat losses can be 
readily determined, if the outside shell tempera- 
ture is known, there is, to date, insufficient 
information available for a determination of 
Q Tt?. UJC' 

The procedures presented in this paper are 
therefore usually applicable only as approxi- 
mations, disregarding the re-radiation. Although 
the outside shell temperature of the kiln is not 
unknown a priori, the rate of heat losses can be 
included in the computation by a method of 
successive approximations. The calculation pro- 
cedures for the several conditions (“well-mixed”, 
“non-mixed”, re-radiation and heat losses, etc.) 
are explained in the several parts of Section 
VI. 
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VI. COMPARISON WITH ACTUAL KILN DATA 

1. Review of Previous Work 
In the light of the several necessary assump- 

tions in the present computing procedure, it 
seemed desirable to compare the performance 
predicted by the new computing procedure with 
results obtained in practice. Only one set of 
papers reporting empirical data was found 
which appears usable for comparison-that of 
Gilbert [24]. Gilbert, however, did not measure 
all items which would be important for a com- 
parison, but instead measured only a few items 
and, by a lengthy computing procedure which is 
not always fully explained, arrives at those items 
used here for comparison. Thus a brief indication 
of Gilbert’s procedure is presented. 

In Gilbert’s investigation, the temperatures of 
the gas and charge are determined for a counter- 
flow, wet-process, rotary cement kiln. Gilbert 
considers the kiln to be composed of a series of 
connected regions described as follows : “drying” 
with the charge temperature reaching but not 
exceeding 212”F, “raising temperature” with 
the charge temperature increasing from 212 to 
1300”F, followed by regions where endothermic 
and exothermic reactions take place. Variations 
in the charge temperature at any cross-section 
are not considered: only average temperatures 
are reported. The present paper will utilize the 
information provided in the region, the purpose 
of which is described by Gilbert as “raising 
temperature”. 

For computational purposes, Gilbert now 
proceeds to subdivide each region into stages. 
In particular, the region for “raising tempera- 
ture” is divided into four stages, and in each of 
these four stages the charge temperature 
increases by an equal amount. The next task is 
to compute the gas temperatures. These Gilbert 
determines on the basis of the following heat 
balance for each stage: 

(a) Decrease of heat content of gas = (Increase 
of heat content of charge) + (Heat losses 
from the shell). 

As yet a direct computation of gas temperatures 
and stage lengths is not possible because of the 
heat transport in the rotating-kiln wall. Thus 
the following, additional, relationships for each 
stage must be considered : 

(b) Decrease of heat content of gas = (Heat 
flow into exposed surface of charge) + 
(Heat flow into exposed part of wall) ; 

(c) Heat flow into exposed part of wall = 
(Heat loss from shell) + (Heat flow 
transmitted to bottom (covered) part of 
charge) + (Heat re-radiated from exposed 
part of wall to exposed charge surface). 

These several relationships lead to complicated 
equations. In order to overcome these difficulties, 
Gilbert uses a method of successive approxima- 
tions, as follows. First he postulates a fixed but 
unknown ratio 71 of heat losses from the shell 
to the total heat increase of the charge in each 
stage. Now, assuming a value for 7, and using 
the end temperatures of the charge (which 
temperatures are used to define the several 
stages), Gilbert is able to determine the tempera- 
ture drop of the gas stream. By proceeding from 
stage to stage, and remembering that the gas 
exit temperature for the kiln is known, he finds 
for each stage both entrance and exit gas 
temperatures. Essentially this procedure rep- 
resents one application of the heat balance, 
item (a), to each stage. 

The next step is to find the average tempera- 
tures for the covered and uncovered portions of 
the kiln for each stage. Since the rotating kiln 
wall transports heat from its exposed section to 
the covered portion, the wall temperature 
varies circumferentially. In his analysis, Gilbert 
avoids this difficulty by introducing the assump- 
tion that the differences of the average tempera- 
tures of the covered and uncovered sections of 
the wall can be equated to a simple expression 
involving only the average temperature difference 
between the gas and charge, and a constant 
called the “lining storage factor”. The introduc- 
tion of the “lining storage factor” is to account 
for the effect of the rotating wall; however, 
Gilbert does not present a rigorous justification 
for this assumption. 

Since the heat received by the exposed portion 
of the kiln wall must be equal to the amount it 
gives off, a trial-and-error method is developed 
by Gilbert to find the average, exposed-wall 
temperature. In this heat balance, item (c), for 
the heat transfer by radiation and convection, 
radiant-gas emissivity values are used for the 
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former and an empirical relationship for the 
heat-transfer coefficient for the latter. Also, 
surprisingly, Gilbert considers that heat is 
transferred from the covered portion of the kiln 
wall to the underside of the charge QW,, not by 
conduction but by thermal radiation. The heat 
losses from the shell are computed from the 
expression for radial conduction through the 
kiln wall. This value for the heat losses must be 
the same as the value obtained from the defini- 
tion of 7. If it is not, then a new value of 7 is 
selected and the computations, as outlined, are 
repeated. 

From the heat balance between the gas 
stream and the exposed kiln wall, item (b), the 
kiln length associated with each stage can now 
be computed. The value of the individual 
quantities of heat transferred per foot of kiln 
length (Qgqti, QBJ are known; consequently the 
sum of these quantities, when divided into the 

the total heat lost by the gas stream per stage, 
determines the required stage length. 

It is well to note that the heat-flow quantities 
are not used to determine the respective tempera- 
tures of the gas and charge, but rather the kiln 
lengths for the various stages. 

In conclusion, Gilbert’s computational pro- 
cedure is a long program, the justification of 
which is based upon his industrial experience. 
Certainly, the manner by which he arbitrarily 
increases the charge temperature is questionable, 
since the heat-transfer coefficients to the charge 
should be used to determine the temperature 
increases. Equally dubious is the use of the 
various constants such as the lining storage 
factor and shell loss fraction. 

The theoretical presentation in the current 
paper couples the gas-temperature drop to the 
charge-temperature rise through heat-transfer 
considerations. No assumptions are made 

KILN WALL 

KILN LENGTH. ft 

FIG. 5. Schematic sketch of Gilbert’s kiln and its temperature. 
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regarding the charge-temperature increase in the 
stages under consideration. Furthermore, the 
expressions for the wall temperatures, exposed 
and covered, are derived from analysis. 
Tn addition, the iterative procedure, as de- 
veloped in the present paper, converges quite 
rapidly. 

2. Data for Gilbert’s Rotary Kiln 
The method of calculation presented in this 

paper holds for a dry kiln. In order to use 
Gilbert’s data for comparison, a region in 
Gilbert’s kiln is selected which bears the 
closest resemblance to a theoretical dry kiln, a 
region where the chemical reactions are negligible, 
and the evaporation of the water from the wet 
slurry has been completed. 

Thus stages 6-9 of Gilbert’s kiln are chosen, 
and according to his paper these serve only to 
raise the temperature of the dry raw material. 
The gas enters stage 9 (see Fig. 5), at a tempera- 
ture of 2450”F, and emerges from stage 6 at a 
temperature of 1894°F.. The charge traveling 
in the opposite direction enters stage 6 at 212°F 

V. PASCHKIS 

and emerges at the end of stage 9 at 1300°F. 
The kiln is sloped at 1 in 24, and the kiln wall 
rotates at 1.2 rev/min. With the help of the 
additional information listed in Tables 1 and 2, 
the results of the “well-mixed” and “non- 
mixed” conditions are compared with the afore- 
mentioned data 

As shown in Fig. 5, stages 6 and 7 have a 
different diameter from stages 8 and 9. Therefore 
calculations based on the “well-mixed” theory 
will be made separately for each pair of stages. 
Thus the four stages are replaced by two kilns, 
and in each case for the given section length, the 
temperatures of the gas and charge are computed 
at the end of stage 7 (or beginning of stage 8). 
A second computation is made which determines 
the kiln lengths necessary to attain a charge 
temperature of 756°F at the end of stage 7. 

In Table 2 the h values are computed by 
introduction in equations (20-22) of the values 
for Qgtou, Q,,, Q,,, Q,, Q2, Q,,, Q,,,,, 4, c, L 
T,, T,, T,, from Gilbert’s paper. Since T,, T,, 
Tl and T2 are functions of z, average values are 
introduced. 

Table 1. Data for stages 6-9 computed from Gilbert’s information 

_~___. 

Stage 6 Stage 7 Stage 8 Stage 9 
___~ __- ~_______ 

00 88.7 88.7 93.2 93.2 
L 12.6 11.1 10.7 IO.1 
& 13 550 13 550 13700 13 700 
E, 5810 5810 5810 5810 
tL -0.985 (1O)-3 -0.985 (1O)-4 -0.994 (lo)-4 -0,994 (10)-a 

~___ .___ 

Table 2. Data for stages 6-9 computed from equations (20-22) 

2- - ______~_ _ ~___ .~__ ~_~____ ___-.~_._-__-~~-.. ~~~ ~___~~~_.__ -_._zzz 

Stage 6~~~~-Stage 7 Stage 8-- ~-----Stage 9 
______ _ -__-- 

A 
hX (avg.) 

4.14 4.42 4.28 4.06 
4.28 4.17 

hlfx 10.95 15.75 21.95 32.1 
h,, (avg.) 13.35 27.03 
h,, 12.03 14.75 18.17 22.5 
h,, (avg.) 13.39 20.34 
h U10 2.0 2.0 
kw* 0.767 0.767 
h 94.1 132.6 
Ambient temp. (‘F) 60 60 

* Same as fireclay brick. 
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3. Computations for the ‘bWell-Mixed” 
Condition 

A. Based on modijied heat-transfer coejicients 
and kiln losses 

The results of the computations described in 
detail below are shown in Table 3, and the data 
used for these calculations appear in Tables 
1 and 2. The charge and gas temperatures at 
the end of stage 7 are computed according to the 
“well-mixed” theory. Stages 6 and 7 together 
are treated as a rotary kiln 23.7 ft in length 
whose gases enter at an unknown temperature 
and leave at a temperature of 1894°F. The charge 
flowing in the opposite direction, enters at a 
temperature of 212°F; its exit temperature is 
to be computed. 

Table 3. Comparison of results for stages 6-9 

T,(O) 
T,(L) 
T,(O) 
T,(L) 
T,(L) t 
T,(L): 
T,(L) t 
TM: 
T,(O) t 
T,(O): 
Tc@) t 
Tc(O): 
Heat lowest 
Heat losses: 
Lt 
L: 

Stages 6 and 7 

1894°F 

212°F 

2192°F 
2178°F 

796°F 
756°F 

623 000 Btu/h 
691000 Btu/h 

22.3 ft 
23.7 ft 

Stages 8 and 9 

2450°F 

1300°F 

2160°F 
2178°F 

702°F 
756°F 

547 500 Btu/h 
693 000 Btu/h 

19.0 ft 
20.8 ft 

t Computed. : Gilbert. 

As the initial step in the computation pro- 
cedure, the average gas and charge temperatures 
are assumed. These values, when substituted 
into the expressions for Q1 and Qz, yield the 
rate of steady-state radial heat losses from the 
shell; thus all terms appearing on the right-hand 
side of equation (17) are known. From equation 
(17) and the heat balance between gas and charge. 
the charge and gas temperatures at the exit (end 
of stage 7) may be determined: 

E, V,(L) - T,(O)> = &V’,(L) - T,(O)1 
+ {QI + Q& (26) 

Based on these values, new average temperatures 

for the gas and charge can be computed. These 
new temperatures when re-substituted into the 
expressions for Q1 and Qz, in turn establish a 
new set of temperatures. This method is repeated 
until there is little change in the successive 
values for the computed charge and gas tempera- 
tures at the end of stage 7. The charge and gas 
temperatures as determined by this method are 
796 and 2192”F, respectively, as against Gilbert’s 
reported values of 756 and 2178°F (see Table 3). 
A further comparison may be made between the 
heat losses reported by Gilbert and those 
established by calculation. For stages 6 and 7 
Gilbert lists the rate of heat losses as 691 000 
Btu/h, while the computed heat losses, 
(Q, + Q.&L, are 623 000 Btu/h. 

To provide an additional test of the “well- 
mixed” theory the temperatures of the charge 
at inlet and exit as well as one gas temperature 
are considered prescribed ; e.g. for stages 6 and 
7 the prescribed gas exit temperature is the 
temperature at the beginning of stage 6, and for 
stages 8 and 9 the prescribed gas inlet tempera- 
ture is the temperature prevailing at the end of 
stage 9. The required length is computed and 
compared with that of the actual kiln. In other 
words, for stages 6 and 7, how long a kiln is 
required to raise the charge temperature from 
212 to 756°F if the exit gas temperature is 
1894”F? The computational procedure is identi- 
cal to the method described previously, and the 
results are listed in Table 3. For stages 6 and 7, 
the computed length is 22.3 ft as against Gilbert’s 
value of 23.7 ft. Although the calculations for 
the kiln length are rather sensitive to small 
variations in the gas temperatures, the com- 
putation results are in close agreement with the 
reported data. 

A second comparison refers to the combined 
stages 8 and 9 representing a kiln 20.8 ft long 
with hot-gas-entrance and charge-exit tempera- 
tures of 2450 and 1300”F, respectively. The gas- 
exit and charge-entrance temperatures are 
computed by the same method as before; the 
location of gas exit and charge entrance is the posi- 
tion between stages 7 and 8, as shown in Fig. 5. 

B. Based on conventional heat-transfer co- 
ejicients and no kiln losses 

For the previous calculations, the concept of 
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the modified heat-transfer coefficients is used. 
Thus, such calculations can be carried out only 
if the rates of heat flow are established otherwise. 
Additional computations were also performed 
with the conventional heat-transfer coefficients 
& &,, heat losses being disregarded. The 
method of calculation is the same as the one 
used in part A of this computation. Re-radiation 
from the exposed portion of the kiln wall to the 
surface of the charge was not considered in 
these calculations. The results of this computa- 
tion are compared with Gilbert’s values (in 
brackets) in Table 4, which also includes a 
comparison of the values for the modified and 
conventional heat-transfer coefficients. Except 
for the charge temperature in stages 8 and 9, the 
temperatures check very well, indicating that at 
least for Gilbert’s kiln it is not necessary to use 
the modified h values; the conventional ones 
yield results in good agreement with Gilbert’s 
data. However, the length, which should be 
smaller for this kiln than Gilbert’s (because in 
the present calculation losses from the shell are 
disregarded), turns out to be larger in stages 
6 and 7. 

Table 4. Results for Gilbert’s kiln based upon conventional 
heat-transfer coeficients, PI,,, h,,, and no heat losses 

A!,, 
Ilou 
A!,, 
II,, 
A,,, 
I~,,., 
At 
T,,(L) t 
T,(L) t 
T,(O) t 
T,(O) t 
Lt 

Stages 6 and 7 

4.28 
13.02 
13.39 
9.08 

13.35 
11.29 
85.55 

2123°F (2178) 
748°F (756) 

24.3 ft (23.7) 

Stages 8 and 9 
- 

4.17 
15.50 
20.34 
14.1 
27.03 
21.18 

134.8 

2177°F (2178) 
658°F (756) 

17.91 ft (20.8) 

t Computed. 

The conventional coefficients are determined 
as follows. The gas-side heat-transfer coefficients 
are obtainable from Gilbert’s temperatures and 
gas volumes. The values, shown in Table 4, are 
the sum of the convection and radiant heat- 
transfer coefficients. The former value is com- 

puted from the conventional convection formulas 
involving Prandtl and Reynolds numbers [5]. 
The latter, the radiation coefficient, is deter- 
mined if the heat that is radiated from the CO2 
and water vapor is divided by the temperature 
difference of gas and wall or charge respectively. 
The respective emissivities and absorptivities 
are determined from the work published by 
Hottel [6]. Since no information is available for 
the heat-transfer coefficient h,,, it is assumed 
that this value is the same as the one determined 
from Gilbert’s work. 

C. Method of calculation including wall losses 
when the modified heat-tramfer coeficients 
are not given 

If the conventional heat-transfer coefficients 
are determinable and the re-radiation term 
Q Te, we is neglected, the following iterative 
procedure yields the gas and charge tempera- 
tures. 

Firstly, computations are performed for the 
rotary kiln with no heat losses. From the average 
wall temperatures, integration of equations 
(5a, b), with respect to the angle 8, the quantities 
QUtV and Que may be evaluated in turn. 

If the kiln is now considered to have heat 
losses when the wall temperatures are at the 
previous values, then, by substitution of the 
conventional heat-transfer coefficients, h,,,, and 
h,,., into equations (18) and (19), the heat losses 
may be determined. The modified heat-transfer 
coefficients follow from equations (21) and (22) 
when the temperatures are the average tempera- 
tures for the stages. It is now a simple matter 
to compute a new value for X based upon the 
modified heat-transfer coefficients: this in turn 
establishes new values for the gas and charge 
temperatures. The method is now repeated 
until convergence is indicated. 

In the computations, the conventional heat- 
transfer coefficients are assumed constants. This 
is not quite true, since h,, and h,, are composed 
of a radiation component which varies with 
temperature. The proposed method does not 
include this effect. 

Computations are performed for stages 8 and 
9, since Table 4 indicates a larger difference in 
the charge temperatures. As shown in Table 5. 
the method appears to converge quickly: final 
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Table 5. ~terut~on procedure for computut~u~ of gas and charge temperafures for stages 8 and 9 
i_l-z.__-_-_.-. 

. . . ..“.--~--_ ______~.~ . “=“--_-.-- 

First step 
(no heat loss- 

c~~~enti~~a~ Second step Third step Fourth and Giibert”s kiln 
heat-transfer final step 

coeflicients 
conditions 

S -- 

km 
20-8 20-g 20-8 ZCM 20.8 
15.50 lf.2.5 12.09 II*82 4.17 

fe 
14.10 M-10 14.10 14*to 20.34 
21.18 21% 21.90 22*20 27.03 

Lcs 
134-8 128-8 130.7 13Q.6 132.6 

2177 2155 2153 2151 2178 
TAOI 658 713 702 701 756 
T, m5.f 2314 2303 2302 2302 23i4 
T, Camf 979 1007 IOOI loot 1028 
TI (avg.1 1895 1791 1826 1807 1580 
T, (avg.1 1878 1777 1797 1792 1369 

f ;: 

93 000 114ooo 106 100 110000 129 300 
84 300 81 800 82 ZOO 82 2QO 55 7OQ 

EP 
95 400 81000 84 800 84 200 35 600 
25 750 25 250 25 250 25 2m 24 380 

Qa 3725 3850 3830 3830 8620 
__I_____“_I-.- ___-_-_=v-~‘- a_ -- .-~_-.I 

gas and charge temperatures being 2151 and 
701 “F, respectively. 

4. ~~~p~~~~~~~~ f& rhtr ~b~~~~-~~~~~~~ 
~~~~j~~~~ 

White computations for the ‘“non-mixed” 
theory are lengthier than those for the ‘“well- 
mixed” ~o~~~t~on, they are still ~anageab1~. 
In the present paper, the ~~~~ations according 
to the “non-fnixed” theory are performed for a 
rotary kiln 23-f ft long, stages 5 and 7, with a 
uniform charge entrance temperature of 2 12°F. 
The temperature distribution in the charge at 
the end of stage 7 may be computed from 
equation (25). Since the severest temperature 
gradients exist dong the center-line of&e charge, 
at x = a/2, only this temperature variation is 
computed. 

As first step, the segmental shape of the charge 
is replaced by a rectangle of equal cross-sectional 
area, as shown in Fig. 4. The dimensions of the 
rectangle are selected so as to include as much 
of the original exposed surface of the charge as 
possible; thus the rectangle% sides are chosen 
as a = 3.41 ft and b = 0.85 ft. 

Since the charge consists of chiefly CaCO,, 
it is assumed that the thermal conductivity of 

the charge equals that of CaCO,, k = 1.3 Btu/h 
ft “F, The resulting temperature profile is shown 
in Fig. 6 where the charge tem~rature is plotted 
against the distance y. The charge temperature 
decreases frum its exposed surface value of 
2178°F to a m.inimum of 530°F at the center, 
y = Q425 ft. Beyond this point the temperature 
steadily increases till it reaches, at the wall, a 
temper~t~e of 1424°F. It is interesting to note 
that, for this one example, almust half of the 
charge, at the center-line, is below the 756°F 
value reported by Gilbert. This result is in line 
with the observed phenomenon that the charge 
at the exit for a poorly designed kiln can deliver 
a substantial percentage of its particles “raw”. 

It should be r~mern~r~d that the curve, 
Fig. 6, shows the temperature profile in the 
center of the charge; if similar profiles were 
drawn near the sides (ab, ac in Fig. 4) the 
average temperature from the “non-mixed”’ 
case would be very dose to the temperature 
from the ~~we~~-~xe~ case. 

VII. DEWSSION AND CONCLUSIONS 

Expressions are presented from which either 
the temperature changes in the gas and charge, 
or the kiln length necessary for a prescribed 
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TEMPERATURE DlSTRl8UTl~N IN THE KtLN 

AT THE END OF STAGES 6 AND 7 

r,J I*705,jb, 237) vs. y 

WHERE: Jv?: 15.452,K: -@169,5:-10866 

2300. ! I 

2100 I 

1900 

/ 
1700 A 

t: 
i? 
F: 

1500 

¶k 
COMPUTED 

TEMPERATURE -7 
g 1300 . 
F 
Z 

\. 
Y 

* 1100 _ / 

_GILBERTS 
TEMPERAT JRE 

0 O-I 0.2 0.3 0.4 0.5 06 o;I 0.8 

FIG. 6. Temperature distribution in the kiln at the end of stages 6 and 7. 

charge temperature can be determined for two 
limiting conditions : the “well-mixed” and “non- 
mixed” cases. The length determined from the 
“well-mixed” theory is a minimal length: ideal 
mixing is assumed, resulting in temperatures 
increasing faster than actually occurring; con- 
sequently the “well-mixed” condition establishes 
a lower limit for the required kiln length. In the 
“non-mixed” condition, there is no tumbling 
of charge particles; thus the charge temperature 
rises more slowly than in the actual case, and 
the required kiln length is longer than in the 
actual case. The “non-mixed” condition deter- 
mines an upper limit for the kiln length. 

The “modified” heat-transfer coefficients 
become equal to the “conventional” heat- 
transfer coefficients when the heat losses and the 
re-radiated heat becomes zero. Even for this 
case, the boundary conductance values are not 

directly 
appears _ _ 

available. As first approximation it 
reasonable to disregard the motion of 

the charge in determination of the h-values. 
One would consider gas velocities for the 
convection component; moreover it would be 
necessary to work with average wall and charge 
surface temperatures. To date, very little 
information is available in the literature about 
the heat-transfer coefficient between the covered 
portion of the kiln wall and the moving charge 
h . Computations based upon data for two 
rtiary kilns 12-4, 7-91 indicate that h,., is 
approximately 5 h,, : this should be used only 
as a rule of thumb. 

The several modified heat-transfer coefficients 
were computed from Gilbert’s work; conse- 
quently the values apply only to the kiln under 
consideration. In the design of a rotary kiln, the 
various heat-flow quantities appearing in equa- 
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tions (20-22) are not known a priori. It would (b) Experimental determination of the h,, 
be desirable to find a method for computing values. 
the modified heat-transfer coefficients from first (c) Exploration of the re-radiation pheno- 
principles. Until such relationships are menon. 
developed, it is hoped that kiln manufacturers (d) Expansion of the calculation procedure to 
will accumulate data from existing kilns in include heats of reaction. 
order to obtain an empirical correlation for the 
modified heat-transfer coefficients. 
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APPENDIX 

The expressions for J, K, R and S used in equation (25) are derived from equations (6) and (7) 
and are: 

T,(L){- P> 1 
J = TC(0){- ~1 + epxL} + - q + 1 1 * 

v[l - efiAL] 
+ -p + efiAL > 

T,(L) 
K = Tc(0){- q~ + efiAL) 

1 [I - erhL] 

- p + 1 I- q + ll[- pl + efixLl 

(Al) 

(A21 

J=R 643) 
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’ = 
11 

T,(O) [- cp + er AL] + -‘GAUL + 1 
-_ 

> 

For use in equation (25) the constants A,,, and B,, are the Fourier coefficients 

sin (mrrx/u) sinh (m~y/a) . 
sm (mrx/u) dx sin (nq/b) dy 

0: = 1.3.L. 

and 

8(- 1) __ __~__. _ _ 
dmn [ 1 + (bm/an)2] 

(A5) 

-8 
=p -cosn?i+l)---- 

nmir2’ 
8(- 1)” 

r2mn [ 1 + (bm/an)a]’ (A6) 

Rksumk-A la suite de considCrations thkoriques, il est Ctabli que, pour obtenir une blkvation de 
tempkrature determinCe dam les fours rotatifs, leur longueur doit &tre comprise entre deux limites. 
La condition de “bon mklange” donne la limite infkrieure (longueur minimum) tandis que la con- 
dition de “non mblange” donne la limite supkrieure (longueur maximum). La longueur des fours 
actuels est comprise entre ces deux limites. Cet article prksente une mkthode de calcul de ces deux 
limites. 

Les resultats obtenus & partir de la thtorie de “bon mklange” concordent remarquablement bien avec 
les donates publikes pour un four rkalisC. 

Zusammenfassung-Urn eine vorgeschriebene TemperaturerhGhung in einem Drehofen zu erreichen, 
ist eine gewisse Weglange erforderlich. Nach theoretischen Betrachtungen kiinnen dafiir zwei Grenz- 
werte angegeben werden. Die Annahme von “Vollmischung” ergibt die untere Grenze (Minimal- 
Llnge); fiir die Annahme “Nichtmischung” folgt die obere Grenze (Maximal-LBnge). Die eigentliche 
Wegllnge im Ofen liegt zwischen diesen beiden Werten. Der Rechengang fiir beide Grenzen ist 
angegeben. 

Die theoretischen Ergebnisse fiir “Vollmischung” stimmen erstaunlich gut mit Veriiffentlichungen 
iiber einen bestehenden Ofen iiberein. 

A~OTaq~--TeOpeTLI~eCIFEI yCTaHOBneHLI J&Ba ItpeAeJIa J&JIHHLI, Tpe6yeMOt AJIR IIOJIyWHEIR 
3aAaHHOrO IIOA%&Na TeMnepaTypLI BO spawarowoxcn nerax. Ycnosme ctxopomero 
IIepeMelIIMBaHHR U COOTBeTCTByeT HLliKHeMy IIpeAeZIy (MHHHMaJILHOa AJIEiHe), B TO BpeMn 
KaK toTcyTcTB5re nepemeumBaHHn 0 COOTBeTCTByeT BepXHeMy IIpeAeJIy (MaKCHMaJIbHOti 
A3IxHe). jJeikcTBRTenLH0 Heo6xoAmMaa AnHHa ne9n XelfCnT Mewzy ~THMH AB~MR npenenaMn. 
B CTaTLe IIPIIBO~HTCR CItOCO6 HaXO~#?HPIH 060MX IlpeAWIOB. 

TeopeTasecKI4e AaHHbIe, nonyseHnbIe B npeAnonoHEeHHa ccxopomero nepeMemnBaHnfi 0, 
-fAIlBElTeJIbHO XOPOIIIO COJYIaCJ’IOTCR C OIIJ’6JIliKOBElHHbIMH CBeAeHElHMEl 0 ZiMeIO~nXCFI IIeqaX. 


