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Abstract—From theoretical considerations, two limits for the length required to achieve a prescribed
temperature rise in rotary kilns are established. The *‘well-mixed” condition represents the lower

limit {minimum length), while the ‘“non-mix
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condition represents the upper limit {maximum

length). The actual kiln length lies between these two limits. Procedures for the calculation of both
limits are presented in the paper.

kiln,

NOMENCLATURE

The following symbols are used in this paper,
and a set of typical dimensions are added in
parentheses:
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m, n,

0,

longer side of a rectangle (ft);

ola I61)
shorter side of a rectangle (ft);

PuCpu  w/k,, (dimensionless);

see Appendix (dimensionless);
houfrifkolre — r;] (dimensionless);
see Appendix (dimensionless);
specific heat at constant
(Btu/lb °F);

RuweFrifkplre — ri] (dimensionless);

we, (Btu/h °F);

boundary conductance (heat-transfer
coefficient) (Btu/ft2 h °F);

modified boundary conductance, see
equation (20) (Btu/ft® h °F);

see Appendix (dimensionless);

see Appendix (dimensionless);

thermal conductivity (Btu/ft h °F);
kiln length (ft);

summation indices;

rate of heat transferred (Btu/h ft);

pressure
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Results from the “well-mixed” theory agree remarkably well with published data for an existing

rate of heat loss from exposed kiln wall
(Btu/h ft);

rate of heat loss from covered kiln wall
{Btu/h ft);

see Appendix (dimensionless);
kiln-wall radius (ft);

rall radius —
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(f;

see Appendix (dimensionless);
temperature measured at angle 8 (°F);
temperature measured at L (°F);
temperature measured at z = 0 (°F);
axial velocity of the charge (ft/h);
weight flow (Ib/h);

Cartesian co-ordinates (ft);

distance measured along kiln bed (ft).

Greek symbols

a, A/2 (dimensionless);

B, [(4/2)* + BJ? (dimensionless);

7, [(4/2)* + CJ# (dimensionless);

8, angle (rad);

6o,  included angle of the charge (deg or
rad);

# o (1E) — (1Ep) (h °F/Btu);

2, density (1b/ft3);

A, see equation (8) (Btu/h ft °F);

w, angular velocity of the rotating kiln
wall (rev/h);

¥, (mmla)® + (nn[b)? (ft~Y);

@, E,/E, (dimensionless).

Subscripts
c, charge;
i, inside;

623



g gas;

o, outside;

w, wall;

1, exposed section of kiln wall;
2, covered section of kiln wall;
gw,  gas to wall;

gc,  gas to charge;

wa, wall to ambient;
we,  wall to charge;
re, re-radiated.

1. INTRODUCTION
WHILE the performance of a rotary kiln depends
critically on the heat transfer, analytical studies
of the thermal behavior of kilns are practically
non-existent. Instead, analysis of the over-all

nerformance of Pvieﬁng nnits led in the pacf to
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several conflicting design criteria, none of which
included the heat-transfer aspects of the kiln.
In a previous paper [1] the authors presented a
theoretical treatment of the heat-transfer con-
siderations, Briefly, it was stated that the exact
analytical expressions for the gas and charge
temperatures in a rotary kiln are too complex for
practical use, and that it therefore seems more
desirable to establish equations for two limits for
these temperatures. These limits are defined as
the “well-mixed” and the “non-mixed” condi-
tions; the terms are derived from the importance
attributed to the mixing of the charge through
tumbling. In the “well-mixed” kiln, the tumbling
is assumed to be so perfect that the charge has a
uniform temperature at any cross-section. For
this case, the above-mentioned paper presents
expressions for the gas, kiln wall, and charge
temperatures. In the ‘“‘non-mixed” condition,
tumbling is assumed not to occur at all; instead,
a slug of charge material, having the cross-
section of the filled part of the drum, travels
along the length of the kiln: under these con-
ditions, the temperature of the charge is not
uniform at any cross-section. The present
paper starts with a brief review of the previously
developed equations, which are then improved
by inclusion of expressions for wall losses and
re-radiation. After expressions for the ‘“non-
mixed” condition performance are derived, data
from an existing kiln are compared with results
obtained by both methods of calculation (“well-
mixed” and “non-mixed”).
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II. REVIEW OF THE ‘*WELL-MIXED’’ CONDITION

In deriving the equations for the “well-mixed”
conditions [1], the authors considered the rotary
kiln as a heat exchanger with the following
modifications. There is no wall separating
the two fluid streams, gas and charge, which are
in heat exchange, and the wall which encom-
passes both streams is rotating. This outer
rotating wall serves as an additional heat-flow
path, since it transports the heat which it
receives from the hot gases to the underside of
the charge: this heat transport occurs in part by
conduction, and in part by storing heat in each
particle of wall while it is exposed to the gas and
giving it off while it is in contact with the charge.
In Fig. 1, the heat-flow paths for a typical section

in the rotary kiln are traced
411 Lhiw l\’L“l] AL QLv LlAawvwu,.

From energy balances for a differential
element dz, of kiln length, the differential
equations for the wall, gas and charge tempera-
tures may be obtained: the solutions to these
equations are complicated functions of dimen-
sionless parameters «, 8, y and ,, the meaning
of which are explained in the nomenclature.
By definition 8 == (o + B)"2and y == (a? + C)V2;
writing the square roots in series form is per-
missible if (B/e?)? < 1 and (C/a?)? < 1:

B 1 B2
B:a+2d_8dé+"' (H
and
C 1¢?

By examination of the physical properties of
actual kilns, one finds that B <€ 2e¢2and C <€ 2a2;
consequently, the series expansion is allowable
and, all terms beyond the second in equations
(1) and (2) may be neglected. Thus, simplified
equations (3) and (4) are obtained:

B
B:a’f“z(; (3)

C
y:a+271 (4)

Disregarding the re-radiation from the exposed
part of the wall through the translucent com-
bustion gases and the heat losses from the
outside surface of the kiln wall, the authors
obtained the following equations for the



A NEW THEORY FOR A ROTARY-KILN HEAT EXCHANGER

625

@
N ~~_ DIRECTION OF
ROTATION

KILN WALL

HEAT TRANSFERRED
FROM GAS TO WALL

HEAT TRANSFERRED
FROM GAS TO GHARGE

HEAT TRANSFERRED

FROM WALL TO CHARGE

FiG. 1, Schematic diagram showing the heat-flow paths and nomenclature for a typical section in a rotary kiln,

temperatures [1], using the approximate ex-
pressions equations (1) and (2) for 8 and y:
for the portion of the wall covered by the charge,

Tyf,z) —T(z) — BQm —6y)
T = Taz) — BCn— 8y + C8,
e~ {C/2a)8, _;_ 1 0 80’ (Sa)

for the exposed portion of the kiln wall washed
by the hot gases,

Z’l_(é’, z) — T(z) Ch,

= e~ (B/2a)8,
T(2) — T,z) B — 8, + (8, ’
8, <08<2m, (5b)
for the gas,
pAz __ aphz
0 =10 = L S+ T
[1— e)[— @ + e¥]
U=l T | ©

and for the charge,

_— 1 — eniz
T(2) = TAD) {%LJ}

[ — eM][— g + e
—@ (1 —¢ll— ¢ + ex2L]
[1 — eu./\L] eu,\z

P el 0

e,u\z

+n@{

where B iE_g
=
and
. 60 1 ] N
A = hyo2r; sin ) + [hwcrieﬁ + hgwri(zﬂ' - 00)]
®)

The expression for A, equation (8), is independent
of the physical properties of the kiln as well as
of its rotational speed. A formulation for A may
be obtained which includes the rotational
speed, the kiln-wall thermal conductivity, and
thickness; however, in the previous investiga-
tions by the authors [1], the contribution of
these quantities is shown to be of second-order
effect only.

L. INCLUSION OF HEAT LOSSES AND
RE-RADIATION

If Q, and Q, represent the average rates of
steady-state heat losses per foot of kiln length
of the uncovered and covered portions of the
kiln wall, respectively, and Q,, ,. the rate of
internal heat re-radiated from the exposed wall
to the charge’s surface, it is possible to extend
the “well-mixed” theory to include these effects
in the following manner. For a differential
element of kiln length dz, the heat-flow paths
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for the uncovered and covered portions of the
kiln wall are shown in Figs. 2 and 3: the terms
1 and 2 represent the heat conducted in the wall;
terms 3 and 4, the heat transported by the rotat-
ing wall. From the energy balance for the hot
gases, the differential quantity of heat lost by the
gas per unit time, dQ,, is

dg, = daQ. + 0+ Q. (9)

where

d
E, 4 T =dQ, (10)

4@,y
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and

d
E, dz T{z) = dQ.. (1)
Subtracting equation (11) from equation (10),
and substituting equation (9) into the result,
one obtains the following relationship:

d 1 2
slne -0} o+ B2

(12)

Equation (12) may be further simplified, since

4

don,wc

o

FiG. 2. Heat-flow paths for the exposed portion of the kiln wall.
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~
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FiG. 3. Heat-flow paths for the covered portion of the kiln wall.
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the rate of heat lost by the gas in dz is also
equal to

de = anc + anw- (13)

As shown in Fig. 2, the rate of heat flow to the
exposed wall from the gases in dz, dQ,,, is

ngw - ere, we + Ql

+[—1—342+4+4]. (149
Substituting equations (13) and (14) into
equation (12) establishes equation (15):
d
aE{TQ(Z) - Tc(z)} = V'{ngc + ere, we
Fi-342+a+ 220y

From the equations for the temperatures in the
wall, and the defining equations (20-22), the
bracketed term may be replaced by

{dec + ere, we + [_1 - 3 + 2 + 4]}

- 0 1
== {2hgcri sin “,70 + [m
- we' Y0

1 -1
ey O -1 19

This substitution, equation (16), is discussed in
the earlier paper by the authors [1]. Performing
the required integration, one obtains the
dimensionless temperature difference:

E(T, =T

T(D —TD) {L[M N _
c/avg.

T,00) — T,0)
0,
E(T, — Tc)avg.]}' n

Since the thickness of the wall is small in
comparison to its perimeter, the circumferential
heat flow may be disregarded. Consequently,
for the exposed portion of the kiln wall, i.e.
area of the wall exposed to the hot gases, the
rate of heat losses Q; may be approximated by
the expression

O

{ 1 1
Ql - iZw [T 60]a,vg /h + }—2;;"?)

gul’s

In (r,/r)) (27 — 6,
- }{77, } (18)

where T, is the arithmetic mean of the gas

entrance and exit temperatures, and the ambient
2E
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temperature is 60°F. Similarly, the rate of heat
losses from the covered portion of the kiln wall
to the ambient Q, may be approximated by

1
0, = {217 [T, — 60Jave. / it

In (ro/rs)
=+ k. }{2—”} (19)

where T, is the arithmetic mean of the charge
entrance and exit temperatures. In the difference
[T, — T, Jave. appearing in the exponential term
of equation (17), the arithmetic means of
entrance and exit values have to be taken for
gas as well as charge temperature. The quantity
A has the same general form as in equation (8);
however, the boundary conductances /.., /1,y
and h,, are replaced by modified values A,., Ay,
and %, and the dimensionless numbers 8 and y
are changed accordingly.

The modified boundary-conductance values
are defined by equations (20-22). For the
exposed portion of the kiln wall, as shown in
Fig. 2,

ng - Ql - Qre, we

= hguri[2m — 6]

[T — Ty(2] (20)
where the left-hand side of the equation rep-
resents the rate of heat received by the kiln wall.
The quantity Q,., . is the heat that is re-
radiated by the surface of the exposed kiln wall
to the charge’s surface. The modified boundary-
conductance value #,, equals the boundary
conductance k,,,, when Q; and Q,,, .. are zero;
the modified boundary conductance can of
course never be negative, but is usually less than
the boundary conductance h,,. From its
definition, h,,, can be interpreted as a measure
of the net energy received by the wall. The total
heat received by the charge through its surface
exposed to the hot gases is

Qe + Ore, we = i’gczri sin %) [T,(2) — T(2)] (21)

where h,, is greater than the conventional heat-
transfer coefficient #,.. For the covered portion
of the kiln wall

ch + Q2 = ﬁwc"z‘eo[Tz(Z) - Tc(z)] (22)
which is consistent with the previous defini-
tions: A, is never negative, and it is a measure
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of the total energy transferred by the covered
portion of the wall. A further discussion of these
relationships appears in Section VII.

IV. THE “NON-MIXED’ CONDITION

As stated above, for the “non-mixed” con-
dition the charge is considered to move down
the kiln axis as a slug having the cross-section
occupied by the charge in the kiln, and possessing
a finite thermal conductivity. In order to solve
the “non-mixed” problem, three simplifying
assumptions are made. Firstly, instead of starting
the computation from the gas temperature, the
surface temperatures are assumed to be known.
Without the information regarding these tem-
peratures, it is assumed that the exposed
surface has the gas temperature, and the covered
surface the wall temperature, as determined for
the “well-mixed” condition: i.e. the tempera-
tures from equations (6) and (5a) respectively
are used. Secondly, the thermal conductivity of
the charge in the z-direction is disregarded, and
thirdly the cross-section of the charge is assumed
to be a rectangle as shown in Fig. 4, rather than
a segment.

Consider a differential element of charge
material of lengths, dx, dy, dz, through whose
faces heat is flowing, and in the axial direction,
z-direction, there is an additional mass transport.
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From the energy balance for this differential
element, the following differential equation
describing the steady-state temperature in the
charge is obtained:

T,
ox?

T,

pccpcv 8Tc
o ko oz

“k, oz

r. 23

A heat exchanger, and correspondingly a kiln,
can be considered as a transient phenomenon
for an observer located in and traveling with the
fluid or charge; or one may consider the problem
as a steady state for an observer on the kiln wall.
For him the charge temperature at any cross-
section in the kiln does not vary with time;
consequently time does not appear as an addi-
tional variable in equation (23).

For a rectangle having sides g and b, and an
initial temperature of 7,(0), the boundary
conditions are

T, (x, Vs O) = Tc(o) )

T.40, y, z) = mean of T, (4, 2)
over the angle 8,

T.(a,y, z) = mean of T, (6, 2)
over the angle 6,

T, (x, 0, z) = mean of 7, (6, z)
over the angle 6,

T,(x,b,z)=T,(2)

L (24)

FEET
o 10 20 30 410
\ KILN RADIUS
10 N N
20 ?
. « |/
‘A_‘
/ | SEGMENT
\ 30 ]
) - Z RECTANGULAR APPROXIMATION
B ]

F1G. 4. Rectangular approximation for charge shape in stages 6 and 7.
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where the origin of the Cartesian co-ordinate
system (x, y) is chosen so that it coincides with
the lower left-hand corner of the rectangle. In
essence, the mathematical problem to be solved
is that of a rectangle with different temperatures
on the several faces, the temperatures varying
with z and therefore with time. The solution is
obtained by using Duhamel’s theorem. The
solution of equation (23) with boundary con-
ditions of equation (24) is found by applying
the principle of superposition:
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programming the equations for a digital com-
puter.

V. LIMITATIONS OF CALCULATIONS

The procedures both for the “well-mixed” and
the “non-mixed’’ conditions are based on a
knowledge of the “modified” boundary con-
ductance as defined by equations (20-22). In
order to determine these modified conductances,
the heat reradiated from the furnace wall to the
charge (QO,., «o) and the heat losses (Q, and Q)

Ty, 165" SC 1 . mex . nmy
—L(T@Ji)—) = Z Z;W-lsm — - sin—=exp (—k. z/pc,, )

m=135 n=135

+ R + Sexp (uh2) + g [/ — R+ (K—S) exp(p./\z)]z

nmy

mmx
+ Z ZAM sin Y sin — =~ {(J + K) exp (—k.z/pec, 0} + AT k)

7n=123 m=13.3

+ Z ZB,,,,, sin

#=123 m=1335

sin (mmx/a) sinh (mny/a)
m sinh (mmb/a)

m=1385

Kua
c‘/’/ Pcc Pe

fexp (u2) — exp (—k. z¢/pccmv>1}

SpA

mmx . nmwy
'—a—' S]n 7 {(R + S) exp ( k Z¢/pﬂcpf U) + mpccﬁcv)

[exp (wAz) — exp (—k. z¢/pccy, v)] 5 (25)

The expressions for J, K, R, S, A, and B,,, are
shown in the Appendix. The large number of
complicated terms appearing in equation (25)
makes numerical evaluation of the charge
temperature time consuming, particularly
because the arguments in the exponent decrease,
and with decreasing argument the required
number of terms increases. Usually it is required
to compute the length z for a desired charge
exit temperature; since the variable z appears as
an implicit function, a closed solution cannot
be expected. Instead, values of z are assumed,
the temperatures calculated and a curve of T vs.
z is plotted; from this curve the value of z
desired to achieve a given value of temperature,
7, is read. The numerical work can be reduced by

must be known. While the heat losses can be
readily determined, if the outside shell tempera-
ture is known, there is, to date, insufficient
information available for a determination of
QTE_‘ we*

The procedures presented in this paper are
therefore usually applicable only as approxi-
mations, disregarding the re-radiation. Although
the outside shell temperature of the kiln is not
unknown a priori, the rate of heat losses can be
included in the computation by a method of
successive approximations. The calculation pro-
cedures for the several conditions (“well-mixed”,
“non-mixed”, re-radiation and heat losses, etc.)
are explained in the several parts of Section
VI
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VI. COMPARISON WITH ACTUAL KILN DATA
1. Review of Previous Work

In the light of the several necessary assump-
tions in the present computing procedure, it
seemed desirable to compare the performance
predicted by the new computing procedure with
results obtained in practice. Only one set of
papers reporting empirical data was found
which appears usable for comparison—that of
Gilbert [2-4]. Gilbert, however, did not measure
all items which would be important for a com-
parison, but instead measured only a few items
and, by a lengthy computing procedure which is
not always fully explained, arrives at those items
used here for comparison. Thus a brief indication
of Gilbert’s procedure is presented.

In Gilbert’s investigation, the temperatures of
the gas and charge are determined for a counter-
flow, wet-process, rotary cement kiln. Gilbert
considers the kiln to be composed of a series of
connected regions described as follows: “drying”
with the charge temperature reaching but not
exceeding 212°F, “‘raising temperature” with
the charge temperature increasing from 212 to
1300°F, followed by regions where endothermic
and exothermic reactions take place. Variations
in the charge temperature at any cross-section
are not considered: only average temperatures
are reported. The present paper will utilize the
information provided in the region, the purpose
of which is described by Gilbert as “‘raising
temperature”.

For computational purposes, Gilbert now
proceeds to subdivide each region into stages.
In particular, the region for ‘“raising tempera-
ture” is divided into four stages, and in each of
these four stages the charge temperature
increases by an equal amount. The next task is
to compute the gas temperatures. These Gilbert
determines on the basis of the following heat
balance for each stage:

(a) Decrease of heat content of gas = (Increase
of heat content of charge) + (Heat losses
from the shell).

As yet a direct computation of gas temperatures
and stage lengths is not possible because of the
heat transport in the rotating-kiln wall. Thus
the following, additional, relationships for each
stage must be considered:

M. IMBER and V. PASCHKIS

(b) Decrease of heat content of gas = (Heat
flow into exposed surface of charge) -+
(Heat flow into exposed part of wall);

(c) Heat flow into exposed part of wall =
(Heat loss from shell) -+ (Heat flow
transmitted to bottom (covered) part of
charge) + (Heat re-radiated from exposed
part of wall to exposed charge surface).

These several relationships lead to complicated
equations. In order to overcome these difficulties,
Gilbert uses a method of successive approxima-
tions, as follows. First he postulates a fixed but
unknown ratio n of heat losses from the shell
to the total heat increase of the charge in each
stage. Now, assuming a value for », and using
the end temperatures of the charge (which
temperatures are used to define the several
stages), Gilbert is able to determine the tempera-
ture drop of the gas stream. By proceeding from
stage to stage, and remembering that the gas
exit temperature for the kiln is known, he finds
for each stage both entrance and exit gas
temperatures. Essentially this procedure rep-
resents one application of the heat balance,
item (a), to each stage.

The next step is to find the average tempera-
tures for the covered and uncovered portions of
the kiln for each stage. Since the rotating kiln
wall transports heat from its exposed section to
the covered portion, the wall temperature
varies circumferentially. In his analysis, Gilbert
avoids this difficulty by introducing the assump-
tion that the differences of the average tempera-
tures of the covered and uncovered sections of
the wall can be equated to a simple expression
involving only the average temperature difference
between the gas and charge, and a constant
called the “lining storage factor”. The introduc-
tion of the “lining storage factor™ is to account
for the effect of the rotating wall; however,
Gilbert does not present a rigorous justification
for this assumption.

Since the heat received by the exposed portion
of the kiln wall must be equal to the amount it
gives off, a trial-and-error method is developed
by Gilbert to find the average, exposed-wall
temperature. In this heat balance, item (c), for
the heat transfer by radiation and convection,
radiant-gas emissivity values are used for the
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former and an empirical relationship for the
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heat-transfer coeﬁic1ent for the latter Also,
surprisingly, Gilbert considers that heat is
transferred from the covered portion of the kiln
wall to the underside of the charge Q,., not by
conduction but by thermal radiation. The heat
losses from the shell are computed from the
expression for radial conduction through the
kiln wall. This value for the heat losses must be
the same as the value obtained from the defini-
tion of ». If it is not, then a new value of 7 is
selected and the computations, as outlined, are
repeated.

From the heat balance between the gas
stream and the exposed kiln wall, item (b), the
kiln length associated with each stage can now

g
individual

A Aassansda walna

be bUlll.lJuLCd The value of
quantities of heat transferred per foot of kiln
length (Q,., Q) are known; consequently the
sum of these quantities, when divided into the

tha
i
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the total heat lost by the gas stream per stage,
determines the requlred stage length.

It is well to note that the heat-flow quantities
are not used to determine the respective tempera-
tures of the gas and charge, but rather the kiln
lengths for the various stages.

In conclusion, Gilbert’s computational pro-
cedure is a long program, the justification of
which is based upon his industrial experience.
Certainly, the manner by which he arbitrarily
increases the charge temperature is questionable,
since the heat-transfer coefficients to the charge
should be used to determine the temperature
increases. Equally dubious is the use of the
various constants such as the lining storage
factor and shell loss fraction.

Th

S ll.e ivviviuival yl WOWILILGLIVEL 111 Lilv
paper couples the gas-temperature drop to the
charge-temperature rise through heat-transfer
considerations. No assumptions are made

thanretical nrecentatinon in the current
WALl Wil

KILN WALL

A

CHARGE TEMPERATURE, °F

KILN LENGTH, ft

FI1G. 5. Schematic sketch of Gilbert’s kiln and its temperature.
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regarding the charge-temperature increase in the
stages under consideration. Furthermore, the
expressions for the wall temperatures, exposed
and covered, are derived from analysis.
In addition, the iterative procedure, as de-
veloped in the present paper, converges quite
rapidly.

2. Data for Gilbert’s Rotary Kiln

The method of calculation presented in this
paper holds for a dry kiln. In order to use
Gilbert’s data for comparison, a region in
Gilbert’s kiln is selected which bears the
closest resemblance to a theoretical dry kiln, a
region where the chemical reactions are negligible,
and the evaporation of the water from the wet
slurry has been completed.

Thus stages 6-9 of Gilbert’s kiln are chosen,
and according to his paper these serve only to
raise the temperature of the dry raw material.
The gas enters stage 9 (see Fig. 5), at a tempera-
ture of 2450°F, and emerges from stage 6 at a
temperature of 1894°F.. The charge traveling
in the opposite direction enters stage 6 at 212°F

Table 1. Data for stages 6-9 computed from Gilbert's information

IMBER and V. PASCHKIS

and emerges at the end of stage 9 at 1300°F.
The kiln is sloped at 1 in 24, and the kiln wall
rotates at 1-2 rev/min. With the help of the
additional information listed in Tables 1 and 2,
the results of the “well-mixed” and ‘“non-
mixed” conditions are compared with the afore-
mentioned data

As shown in Fig. 5, stages 6 and 7 have a
different diameter from stages 8 and 9. Therefore
calculations based on the “well-mixed” theory
will be made separately for each pair of stages.
Thus the four stages are replaced by two kilns,
and in each case for the given section length, the
temperatures of the gas and charge are computed
at the end of stage 7 (or beginning of stage 8).
A second computation is made which determines
the kiln lengths necessary to attain a charge
temperature of 756°F at the end of stage 7.

In Table 2 the A values are computed by
introduction in equations (20-22) of the values
for Qyw’ cha ana Ql’ Q29 Qre! Qre’wc 009 i Tc’
T, T, T, from Gilbert’s paper. Since T,, T,,
T, and T, are functions of z, average values are
introduced.

Stage 6 Stage 7 Stage 8 Stage 9
8, 88-7 88-7 932 932
L 12:6 111 10-7 101
E, 13 550 13 550 13 700 13 700
E, 5810 5810 5810 5810
w —0-985 (1) -0-985 (10)¢ —0-994 (10)~*

Stage 6 ~— Stage 7 Stage 8 ~ Stage 9
hyy 4-14 442 428 4-06
h,e (ave.) 4-28 4-17
fwe 10-95 15-75 21-95 32-1
hiy. (avg.) 13-35 27-03
hy. 12-03 1475 18-17 225
h,. (avg.) 13-39 20-34
ha 20 20
ko* 0-767 0-767
A 94-1 132-6
Ambient temp. (°F) 60 60

* Same as fireclay brick.



A NEW THEORY FOR A ROTARY-KILN HEAT EXCHANGER

3. Computations for the “Well-Mixed”
Condition

A. Based on modified heat-transfer coefficients

and kiln losses

The results of the computations described in

detail below are shown in Table 3, and the data
used for these calculations appear in Tables
1 and 2. The charge and gas temperatures at
the end of stage 7 are computed according to the
“well-mixed” theory. Stages 6 and 7 together
are treated as a rotary kiln 23-7 ft in length
whose gases enter at an unknown temperature
and leave at a temperature of 1894°F. The charge
flowing in the opposite direction, enters at a
temperature of 212°F; its exit temperature is
to be computed.

Table 3. Comparison of results for stages 6-9

Stages 6 and 7 Stages 8 and 9

7.,(0) 1894°F

T,(L) 2450°F
T.0) 212°F

TAL) 1300°F
TLLYy 2192°F

TAL); 2178°F

T.(L)t 796°F

T.(L); 756°F

T,0)t 2160°F
T.(0): 2178°F
T.(0)t 702°F
T.(0)} 756°F
Heat lossest 623 000 Btu/h 547 500 Btu/h
Heat losses? 691 000 Btu/h 693 000 Btu/h
Lt 22-3 ft 19-0 ft

L} 237 ft 20-8 ft

t Computed. 1 Gilbert.

As the initial step in the computation pro-
cedure, the average gas and charge temperatures
are assumed. These values, when substituted
into the expressions for @, and Q,, yield the
rate of steady-state radial heat losses from the
shell; thus all terms appearing on the right-hand
side of equation (17) are known. From equation
(17) and the heat balance between gas and charge.
the charge and gas temperatures at the exit (end
of stage 7) may be determined:

E,{T(L) — T,0)} = EA{TAL) — T.0)}
+ {Q1 + G}L. (26)
Based on these values, new average temperatures
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for the gas and charge can be computed. These
new temperatures when re-substituted into the
expressions for @, and Q,, in turn establish a
new set of temperatures. This method is repeated
until there is little change in the successive
values for the computed charge and gas tempera-
tures at the end of stage 7. The charge and gas
temperatures as determined by this method are
796 and 2192°F, respectively, as against Gilbert’s
reported values of 756 and 2178°F (see Table 3).
A further comparison may be made between the
heat losses reported by Gilbert and those
established by calculation. For stages 6 and 7
Gilbert lists the rate of heat losses as 691 000
Btu/h, while the computed heat losses,
(Q; + @)L, are 623 000 Btu/h.

To provide an additional test of the “well-
mixed” theory the temperatures of the charge
at inlet and exit as well as one gas temperature
are considered prescribed; e.g. for stages 6 and
7 the prescribed gas exit temperature is the
temperature at the beginning of stage 6, and for
stages 8 and 9 the prescribed gas inlet tempera-
ture is the temperature prevailing at the end of
stage 9. The required length is computed and
compared with that of the actual kiln. In other
words, for stages 6 and 7, how long a kiln is
required to raise the charge temperature from
212 to 756°F if the exit gas temperature is
1894°F ? The computational procedure is identi-
cal to the method described previously, and the
results are listed in Table 3. For stages 6 and 7,
the computed length is 22-3 ft as against Gilbert’s
value of 23-7 ft. Although the calculations for
the kiln length are rather sensitive to small
variations in the gas temperatures, the com-
putation results are in close agreement with the
reported data.

A second comparison refers to the combined
stages 8 and 9 representing a kiln 20-8 ft long
with hot-gas-entrance and charge-exit tempera-
tures of 2450 and 1300°F, respectively. The gas-
exit and charge-entrance temperatures are
computed by the same method as before; the
location of gas exit and charge entrance is the posi-
tion between stages 7 and 8, as shown in Fig. 5.

B. Based on conventional heat-transfer co-
efficients and no kiln losses
For the previous calculations, the concept of
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the modified heat-transfer coefficients is used.
Thus, such calculations can be carried out only
if the rates of heat flow are established otherwise.
Additional computations were also performed
with the conventional heat-transfer coefficients
fges By heat losses being disregarded. The
method of calculation is the same as the one
used in part A of this computation. Re-radiation
from the exposed portion of the kiln wall to the
surface of the charge was not considered in
these calculations. The results of this computa-
tion are compared with Gilbert’s values (in
brackets) in Table 4, which also includes a
comparison of the values for the modified and
conventional heat-transfer coefficients. Except
for the charge temperature in stages 8 and 9, the
temperatures check very well, indicating that at
least for Gilbert’s kiln it is not necessary to use
the modified % values; the conventional ones
yield results in good agreement with Gilbert’s
data. However, the length, which should be
smaller for this kiln than Gilbert’s (because in
the present calculation losses from the shell are
disregarded), turns out to be larger in stages
6 and 7.

Table 4. Results for Gilbert’s kiln based upon conventional
heat-transfer coefficients, hy., h, and no heat losses

Stages 6 and 7 Stages 8 and 9

e 428 417

o 13-02 15-50

fiye 1339 2034

Bye 9-08 14-1

e 13-35 27-03

e 11-29 21-18

At 85-55 1348

T,(L)t 2123°F (2178)

TAL)t T48°F (756)

T,(0)t 2177°F (2178)

T0)t 658°F (756)

Lt 24-3 ft (23-7) 17-91 ft (20-8)
t+ Computed.

The conventional coefficients are determined
as follows. The gas-side heat-transfer coefficients
are obtainable from Gilbert’s temperatures and
gas volumes. The values, shown in Table 4, are
the sum of the convection and radiant heat-
transfer coefficients. The former value is com-
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puted from the conventional convection formulas
involving Prandtl and Reynolds numbers [5].
The latter, the radiation coefficient, is deter-
mined if the heat that is radiated from the CO,
and water vapor is divided by the temperature
difference of gas and wall or charge respectively.
The respective emissivities and absorptivities
are determined from the work published by
Hottel [6]. Since no information is available for
the heat-transfer coefficient #,,, it is assumed
that this value is the same as the one determined
from Gilbert’s work.

C. Method of calculation including wall losses
when the modified heat-transfer coefficients
are not given

If the conventional heat-transfer coefficients
are determinable and the re-radiation term
Qe we is neglected, the following iterative
procedure yields the gas and charge tempera-
tures.

Firstly, computations are performed for the
rotary kiln with no heat losses. From the average
wall temperatures, integration of equations
(5a, b), with respect to the angle 8, the quantities
Q.. and Q,, may be evaluated in turn.

If the kiln is now considered to have heat
losses when the wall temperatures are at the
previous values, then, by substitution of the
conventional heat-transfer coefficients, 4,,, and
h,.. into equations (18) and (19), the heat losses
may be determined. The modified heat-transfer
coefficients follow from equations (21) and (22)
when the temperatures are the average tempera-
tures for the stages. It is now a simple matter
to compute a new value for A based upon the
modified heat-transfer coefficients: this in turn
establishes new values for the gas and charge
temperatures. The method is now repeated
until convergence is indicated.

In the computations, the conventional heat-
transfer coefficients are assumed constants. This
Is not quite true, since h,, and #,,, are composed
of a radiation component which varies with
temperature. The proposed method does not
include this effect.

Computations are performed for stages 8 and
9, since Table 4 indicates a larger difference in
the charge temperatures. As shown in Table 5.
the method appears to converge quickly: final
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Table 5. Iteration procedure for computations of gas and charge temperatures for stages 8 and 9
First step
{no heat loss—
conventional Second step Third step Fourth and Gilbert’s kiln
heat-transfer final step
coefficients
condition}
L 20-8 208 208 20-8 20-8
Frow 15-50 11-25 1209 11-82 417
Foe 1410 14-10 14-10 14-10 20-34
Buse 21-18 21-95 21-90 22-20 2703
A 134-8 128-8 130-7 1306 132-6
TAL) 2177 2155 2153 2151 2178
T4 658 713 702 01 756
T, (ave) 2314 2303 2302 2302 2314
T, (avg} 979 1007 1001 1001 1028
T, (avg) 1893 1791 1826 1807 1580
T, (avg} 1878 1777 1797 1792 1369
ow 93 000 114 000 106 100 110 000 129 300
L 84 300 81 800 82200 82 200 55700
Que 95 400 81 000 84 800 84 200 35 600
o, 25750 25150 25 250 25200 24 380
Qs 3725 3850 3830 3830 8620

gas and charge temperatures being 2151 and
701°F, respectively.

4. Computations for the * Non-Mixed”
Condition

While computations for the ‘“‘non-mixed”
theory are lengthier than those for the “well-
mixed” condition, they are still manageable.
In the present paper, the calculations according
to the “‘non-mixed” theory are performed for a
rotary kiln 23-7 ft Tong, stages 6 and 7, with a
uniform charge entrance temperature of 212°F.
The temperature distribution in the charge at
the end of stage 7 may be computed from
equation (25). Since the severest temperature
gradients exist along the center-line of the charge,
at x == /2, only this temperature variation is
computed.

As first step, the segmental shape of the charge
is replaced by a rectangle of equal cross-sectional
area, as shown in Fig. 4. The dimensions of the
rectangle are selected so as fo include as much
of the original exposed surface of the charge as
possible; thus the rectangle’s sides are chosen
asa =341 ftand b = 0-85 ft.

Since the charge consists of chiefly CaCQy,,
it is assumed that the thermal conductivity of

the charge equals that of CaCQOy,, & = 1'3 Btu/h
ft °F. The resulting temperature profile is shown
in Fig. 6 where the charge temperature is plotted
against the distance y. The charge temperature
decreases from its exposed surface value of
2178°F to a minimum of 530°F at the center,
» = 0-425 ft. Beyond this point the temperature
steadily increases till it reaches, at the wall, a
temperature of 1424°F. It is interesting to note
that, for this one example, almost half of the
charge, at the center-line, is below the 756°F
value reported by Gilbert. This result is in line
with the observed phenomenon that the charge
at the exit for a poorly designed kiln can deliver
a substantial percentage of its particles “raw”.

It should be remembered that the curve,
Fig. 6, shows the temperature profile in the
center of the charge; if similar profiles were
drawn near the sides (ub, ac in Fig. 4) the
average temperature from the ‘“non-mixed”
case would be very close to the temperature
from the “well-mixed”™ case.

VI DISCUSSION AND CONCLUSIONS
Expressions are presented from which either
the temperature changes in the gas and charge,
or the kiln length necessary for a prescribed
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TEMPERATURE DISTRIBUTION IN THE KILN
AT THE END OF STAGES 6 AND 7
71705, 1,237} VS.
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Fi6. 6. Temperature distribution in the kiln at the end of stages 6 and 7,

charge temperature can be determined for two
limiting conditions: the “well-mixed” and “non-
mixed” cases. The length determined from the
“well-mixed” theory is a minimal length: ideal
mixing is assumed, resulting in temperatures
increasing faster than actually occurring; con-
sequently the “well-mixed” condition establishes
a lower limit for the required kiln length. In the
“non-mixed” condition, there is no tumbling
of charge particles; thus the charge temperature
rises more slowly than in the actual case, and
the required kiln length is longer than in the
actual case. The “non-mixed” condition deter-
mines an upper limit for the kiln length.

The “modified” heat-transfer coefficients
become equal to the “conventional” heat-
transfer coefficients when the heat losses and the
re-radiated heat becomes zero. Even for this
case, the boundary conductance values are not

directly available. As first approximation it
appears reasonable to disregard the motion of
the charge in determination of the hA-values.
One would consider gas velocities for the
convection component; moreover it would be
necessary to work with average wall and charge
surface temperatures. To date, very little
information is available in the literature about
the heat-transfer coefficient between the covered
portion of the kiln wall and the moving charge
hy,e. Computations based upon data for two
rotary kilns [2-4, 7-9] indicate that k,, is
approximately 5 A,,: this should be used only
as a rule of thumb.

The several modified heat-transfer coefficients
were computed from Gilbert’s work; conse-
quently the values apply only to the kiln under
consideration. In the design of a rotary kiln, the
various heat-flow quantities appearing in equa-
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tions (20-22) are not known a priori. It would
be desirable to find a method for computing
the modified heat-transfer coefficients from first
principles. Until such relationships are
developed, it is hoped that kiln manufacturers
will accumulate data from existing kilns in
order to obtain an empirical correlation for the
modified heat-transfer coefficients.

Summarizing some of the findings, one may
state that the rotational speed of the kiln has no
direct bearing on the heat exchange; also,
within practical limits shown in [1], neither
thickness of the lining nor its thermal properties
have bearing on the thermal performance of the
kiln when the heat losses are zero. For the one
kiln for which operating data were found in the
literature, the theory presented for the “well-

-mixed” condition yields results remarkably

close to the reported values, as may be seen
from the three sets of computations listed in
Table 3.

For the “non-mixed” condition, the charge-
temperature distribution along the center of the
charge is obtained. The maximum exit tempera-
ture of the charge is 226°F or 30 per cent lower
than the reported average of 756°F.

The calculations presented in this and the
previous paper are a first step of rationalizing
the thermal design of kilns. Further work
should include:

(a) Experimental determination of the #,,
values considering, amongst others, the
influence of tumbling, nature of the charge,
etc.

637

(b) Experimental determination of the h,,
values.

(c) Exploration of the re-radiation pheno-
menon.,

(d) Expansion of the calculation procedure to
include heats of reaction.

ACKNOWLEDGEMENTS

The authors wish to take this opportunity to express
their gratitude to H. D. Baker, F. Freudenstein and J. H.
Weiner, of the Mechanical Engineering Department at
Columbia University, for their valuable advice.

REFERENCES

1. M. ImBER and V. PascHkis, A mathematical analysis
of the rotary kiln heat exchanger—1. The well-mixed
condition, in Radex Rundschau Vol. 4. Oesterreichisch-
Amerikanische Magnesit Aktiengesellschaft, Raden-

thein/Karten (1960).

2. W. GiuBert, Investigations on a slurry drier or
calcinator—1. Cement & Cem. Manuf. 9, 115-128
(1936).

3. W. GiBerT, Investigations on a slurry drier or
calcinator—2. Cement & Cem. Manuf. 9, 139-154
(1936).

4. W. GILBERT, Investigations on a slurry drier or
calcinator—3. Cement & Cem. Manuf. 9, 207-220
(1936).

5. W. H. McApawms, Heat Transmission (3rd Ed.), p. 219.
McGraw-Hill, New York (1954).

6. W. H. McApawms, Hear Transmission (3rd Ed.), pp.
82-98. McGraw-Hill, New York (1954).

7. H. Gyal, The thermal efficiency of the rotary cement
kiln—4. Heat transfer. Cement & Cem. Manuf. 11,
79-84 (1938).

8. H. Gyai, The thermal efficiency of the rotary cement
kiln—4 (contd.). Heat transfer. Cement & Cem. Manuf.
11, 133-141 (1938).

9. H. Gyal, The thermal efficiency of the rotary cement
kiln—4 (contd.). Heat transfer. Cement & Cem. Manuf.
11, 143-153 (1938).

APPENDIX

The expressions for J, K, R and S used in equation (25) are derived from equations (6) and (7)

and are:

J TA(L){— ¢}

T T0){— ¢ + eL}

X T,(L)

J=R

T TO{—gF+ e} —g+1 [—e+Il—¢ 1t eE

1 pll — et]
+—¢+1{1+W} (An
1 [l — ewL] a2

(A3)
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[ B2m — 0y)(e(0:/20) — 1) 41 T(D)[— ¢ + 1] 1 — ewrl A
= (€802 [BCr — 85) + Chy) f i O g t+em T —premt!;
T 1) 1 [1— enr)
T0) (—o + e““f TSl e iy fery @9
For use in equation (25) the constants 4,,, and B,,, are the Fourier coefficients
4 (**( 4 < sin (mwx/a) sinh (mwy/a)
A = EBJ ] { ; m sinh (rmb/a) } sin (mmx/a) dx sin (nwy/b) dy
B 8(— 1)
= wtmnll & (mjan®] A
and
4 [ef? 4
By, — [ [ { — 1+ ? Sin (mmx/a) sinh ( iy a)) sin (mrx/a) dx sin (nmy/b) dy
0 ) Ire dl1 llll l U
— 8 — 1"
=— s1— cosam + 1} — —;M( : ) (A6)
nmm m*mn{l + (bm/an)
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Résumé—A la suite de considérations thcuuquco, il est établi que, pour obtenir une élévation de
température déterminée dans les fours rotatifs, leur longueur doit étre comprise entre deux limites.
La condition de “bon mélange” donne la limite inférieure (longueur minimum) tandis que la con-
dition de “non mélange” donne la limite supérieure (longueur maximum). La longueur des fours

melar e 14 UIMILC Supeticure (1ongucul maxiniime.

actuels est comprise entre ces deux limites, Cet article présente une méthode de calcul de ces deux
limites.
Les résultats obtenus a partir de la théorie de ‘“bon mélange™ concordent remarquablement bien avec
les données publiées pour un four réalisé.

Zusammenfassung—Um eine vorgeschriebene TemperaturerhGhung in einem Drehofen zu erreichen,
ist eine gewisse Weglinge erforderlich. Nach theoretischen Betrachtungen kdnnen dafiir zwei Grenz-
werte angegeben werden. Die Annahme von “‘Vollmischung” ergibt die untere Grenze (Minimal-
Lﬁnge) fiir die Annahme “Nichtmischung” folgt die obere Grenze (Maximal—Léinge) Die eigentliche

xx7,

weglange im Ofen uegc zwischen diesen beiden Werten. Der Kecnengang fiir beide Grenzen ist

angegeben.
Die theoretischen Ergebnisse fiir “Vollmischung” stimmen erstaunlich gut mit Verdffentlichungen

ither einen hegtehenden Ofen itherain
UOCT CINCil SCSIEndnaln Lidhn UoCraiil.

Apnoranua—TeopeTHUecKU YCTAHOBIEHH J(BA IIpefesa AJMMHBL, TpeGyeMolt IJIA IOIydYeHNs
3ATAHAOTO  TIOHEMA  TEMIEDATYPH BO BpAIAOINUXCH IIeYax. YCIOBHE «XOPOINero
NepeMeIIMBAHUA» COOTBETCTBYET HIKHEMY Hpefesdy (MHUHMMAJIbHON [IHHE), B TO BPeMA
KaK <OTCYTCTBME MePEeMEIIMBAHUAY COOTBETCTBYET BePXHEMY IIpefiesy (MaKCHMalbHOH
noune). J{eilcTBUTEIHHO HEOOXOAMMAA NJIMHA [eYl JIeHHT MEHuly STHMM ABYMS IIpefieslaMiu.
B craTbe NpUBOAMTCH CIOCO0 HAX0KAEHUA 000NX IIPETeoB.

TeopeTuyeckue JAHHHE, HOIyYeHHEEe B IPELIOJIOMEHHH (XODOIIETd IMepeMenIMBAHMA Y,
VIUBATEJIbHO XOPOHIO COIVIACYIOTCA ¢ OILYGIMKOBAHHLIMM CBeIeHHAMH O HMeEIOIUXCA Mevax.



